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First-Passage Properties of Records

I. Records of correlated random variables        	


II. Records of uncorrelated random variables

Two different problems, similar phenomenology



Records & Extreme value statistics 
New frontier in nonequilibrium statistical physics

• Biological evolution          Bak, Derrida, Flyvbjerg, Jain, Krug	


• Population dynamics    Kamenev, Meerson, Dykman, Doering	


• Brownian motion                Comtet, Majumdar, Krug, Redner	


• Surface growth           Spohn, Halpin-Healy, Majumdar, Schehr	


• Transport              Mallick, Krapivsky, Derrida, Lebowitz, Speer	


• Climate                        Bunde, Havlin, Krug, Wergen, Redner	


• Earthquakes            Davidsen, Sornette, Newman,Turcotte, EB	


• Finance                                Bouchaud, Stanley, Majumdar



Part I	

Maxima of Brownian Particles	


(records of correlated variables)
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• Universal probability	


!

•  Asymptotic behavior

First-Passage Kinetics: Brownian Positions

Universal first-passage exponent
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Sparre 
Andersen 53

Behavior holds for Levy flights, different mobilities, etc 

Probability two Brownian particle do not meet

S. Redner, A guide to First-Passage Processes 2001

Feller 68
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• Numerical simulations	


!

• First-passage exponent

First-Passage Kinetics: Brownian Maxima

Is ¼ exact? and if it is, does ¼=½×½? 	

Is exponent universal? 

Probability maximal positions remain ordered

S ⇠ t��

� = 0.2503± 0.0005
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Hints at a rational exponent
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m1 > m2 if and only if m1 > x2



From four variables to three

• Four variables: two positions, two maxima	


!

• The two maxima must always be ordered	


!

• Key observation: trailing maximum is irrelevant!	


!

• Three variables: two positions, one maximum

m1 > x1 and m2 > x2

m1 > m2

m1 > m2 if and only if m1 > x2

m1 > x1 and m1 > x2



From three variables to two
• Introduce two distances from the maximum	


!

• Both distances undergo Brownian motion 	


!

• Boundary conditions: (i) absorption (ii) advection	


!

• Probability maxima remain ordered

u = m1 � x1 and v = m1 � x2
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Diffusion in corner geometry



“Backward” evolution

• Study evolution as function of initial conditions	


!

• Obeys diffusion equation 	


!

• Boundary conditions: (i) absorption (ii) advection	


!

• Advection boundary condition is conjugate

P ⌘ P (u0, v0, t)

�P (u0, v0, t)

�t
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Solution
• Use polar coordinates	


!

• Laplace operator	


!

• Boundary conditions: (i) absorption (ii) advection	


!

• dimensional analysis + power law + separable form
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Selection of exponent

• Exponent related to eigenvalue of angular part of Laplacian	


!

• Absorbing boundary condition selects solution	


!

• Advection boundary condition selects exponent	


!

• First-passage probability

f 00(⇥) + (2�)2f(⇥) = 0

f(⇥) = sin (2�⇥)

tan (�⇡) = 1

P ⇠ t�1/4



General diffusivities

• Particles have diffusion constants D1 and  D2	


!

!

• Condition on maxima involves ratio of mobilities 	

!

!

• Analysis straightforward to repeat 	


!

• First-passage exponent: nonuniversal, mobility-dependent
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ben Avraham 	

Leyvraz  88 



0 0.5 1 1.5 2 2.5 3
D1/D2

0

0.1

0.2

0.3

0.4

0.5

β

simulation
theory

Numerical verification

Perfect agreement 	

simulations can confirm a line (but not a point)



Properties
• Depends on ratio of diffusion constants	


!

• Bounds: involve one immobile particle	


!

• Rational for special values of diffusion constants	


!

• Duality: between “fast chasing slow” and “slow chasing fast”
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Inferior & Superior walks
Maximum is always behind or ahead of the	

average maximum of a Brownian particle

Different mobilities: neglect fluctuations in maximum of slower 
particle (represent maximum by its average) and obtain limits
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Krapivsky & Redner 95	
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• All maxima perfectly ordered	


!

• Only one leader 	


!

• Only one laggard	


!

• Three families of first-passage exponents

Multiple particles

Exponents are eigenvalues of  	

“angular” component of Laplace in n dimensions

Fisher & Huse 88

Bramson & Griffith 91

ben Avraham & Redner 03

m1 > m2 > m3 > · · · > mn

m1 > mn m2 > mn · · · mn�1 > mn

m1 > m2 m1 > m3 · · · m1 > mn

An ⇠ t��n Bn ⇠ t�⇥n Cn ⇠ t�⇤n



• Simulation results: maxima vs positions	


!

!

!

• Positions: one family is known	


 	


• Asymptotic behavior for large number of particles	


!

• And a conjecture!

Three families of exponents
Grassberger 03	

ben Avraham 03	


EB & Krapivsky 10

Fisher & Huse 88

maxima positions

n �n ⇥n ⇤n an bn cn
2 1/4 1/4 1/4 1/2 1/2 1/2
3 0.653 0.432 0.335 3/2 3/4 3/8
4 1.13 0.570 0.376 3 0.91 0.306
5 1.60 0.674 0.401 5 1.02 0.265
6 2.01 0.759 0.417 15/2 1.11 0.234
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Conclusions I
• First-passage kinetics of extremes in Brownian motion	


• Problem reduces to diffusion in a two-dimensional 
corner with mixed boundary conditions	


• First-passage exponent obtained analytically	


• Exponent is continuously varying function of mobilities	


• Relaxation is generally slower compared with positions	


• Open questions: multiple particles, higher dimensions	


• Scaling of eigenvalues in thermodynamics limit?	


• “Race between maxima” as a data analysis tool



Part II	

Incremental Records	


(records of uncorrelated variables)



Marathon world record

Incremental sequence of records	


every record improves upon previous 
record by yet smaller amount 

Are incremental sequences of records common?

Year Athlete Country Record Improvement

2002 Khalid Khannuchi USA 2:05:38

2003 Paul Tergat Kenya 2:04:55 0:43

2007 Haile Gebrsellasie Ethiopia 2:04:26 0:29

2008 Haile Gebrsellasie Ethiopia 2:03:59 0:27

2011 Patrick Mackau Kenya 2:03:38 0:21

2013 Wilson Kipsang Kenya 2:03:23 0:15

source: wikipedia



Incremental Records

Incremental sequence of records	


every record improves upon previous 
record by yet smaller amount 

y1

y2

y3
y4

random variable = {0.4, 0.4, 0.6, 0.7, 0.5, 0.1}
latest record = {0.4, 0.4, 0.6, 0.7, 0.7, 0.7} �

latest increment = {0.4, 0.4, 0.2, 0.1, 0.1, 0.1} ⇥

What is the probability all records are incremental?
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Probability all records are incremental

Power law decay with nontrivial exponent	

Question is free of parameters!

SN ⇠ N�� � = 0.31762101



Uniform distribution

• The variable x is randomly distributed in [0:1] 
!

• Probability record is smaller than x	

 	


• Average record	

!

!

• Number of records 

AN =
N
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Distribution of records 
• Probability a sequence is inferior and record < x	


!

• One variable	

!

• Two variables 	

!

• In general, conditions are scale invariant 	


• Distribution of  records for incremental sequences	


!

• Distribution of records for all sequences equals 

Statistics of records are standard

GN (x) =) SN = GN (1)

G1(x) = x =) S1 = 1

G2(x) =
3

4
x

2 =) S2 =
3

4

GN (x) = SN x

N

x ! a x

x
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x2 = x1

x2 = 2x1

x

x

x/2

Fisher-Tippett 28	

Gumbel 35

x2 � x1 > x1
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Scaling behavior

• Distribution of  records for incremental sequences	


!

• Scaling variable 

Exponential scaling function

GN (x)/SN = x

N = [1� (1� x)]N ! e

�s

s = (1� x)N



Distribution of increment+records
• Probability density SN(x,y)dxdy that:	


1. Sequence is incremental	

2. Current record is in range (x,x+dx) 
3. Latest increment is in range (y,y+dy) with 0<y<x	


• Gives the probability a sequence is incremental	


!

• Recursion equation incorporates memory               	


!

!

• Evolution equation includes integral, has memory
old record holds a new record is set
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Scaling transformation
• Assume record and increment scale similarly	


 	


• Introduce a scaling variable for the increment	


!

• Seek a scaling solution	


!

• Eliminate time out of the master equation

s = (1� x)N and z = yN

y ⇠ 1� x ⇠ N

�1

SN (x, y) = N

2
SN �(s, z)

✓
2� � + s+ s

⇥

⇥s
+ z

⇥

⇥z

◆
�(s, z) =

Z 1

z
dz0 �(s+ z, z0)

Reduce problem from three variables to two



Factorizing solution
• Assume record and increment decouple	


 	


• Substitute into equation for similarity solution	


!

• First order integro-differential equation	


!

• Cumulative distribution of scaled increment	


• Convert into a second order differential equation
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Distribution of increment
• Assume record and increment decouple	


 	


• Two independent solutions	


!

• The exponent is determined by the tail behavior 	


!

• The distribution of increment has a broad tail 

g(0) = 1

g0(0) = �1/(2� �)
zg00(z) + (2� �)g0(z) + e�zg(z) = 0

g(z) = z⌫�1
and g(z) = const. as z ! 1

PN (y) ⇠ N�1y��2

Increments can be relatively large	

problem reduced to second order ODE

� = 0.31762101
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Generalizations:	

Superior and Inferior Records	


(records of uncorrelated variables)



Superior Records
• Start with sequence of random variables	


!

• Calculate the sequence of records	


!

• Compare with the expected average 	


!

• Superior sequence = records always exceeds average	


!

• What fraction SN of sequences is superior? 

measure of “performance”

{A1, A2, A3, . . . , AN} = {1/2, 2/3, 3/4, . . . , N/(N + 1)}

{X1, X2, X3, . . . , XN} where Xn = max(x1, x2, . . . , xn}

Xn > An for all 1  n  N

{x1, x2, x3, . . . , xN}
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Distribution of superior records
• Cumulative probability distribution FN(x) that:	


1. Sequence is superior ( Xn >An for all n ) and	

2. Current record is larger than x (XN >x )	


• Gives the desired probability immediately	

!

• Recursion equation               	

!

!

• Recursive solution

SN = FN (AN )

FN+1(x) = xFN (x) + (1� x)FN (AN ) x > AN+1

F1(x) = 1� x

F2(x) =
1
2

�
1 + x� 2x2

�

F3(x) =
1
18
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7 + 2x+ 9x2 � 18x3

�

F4(x) =
1
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�
191 + 33x+ 64x2 + 288x3 � 576x4

�

S1 = 1
2

S2 = 7
18

S3 = 191
576

S4 = 35393
120000

)
SN = FN (AN )

old record holds a new record is set



• Convert recursion equation	

 	

into a differential equation (N plays role of time!)	


!

• Seek a similarity solution (          limit) 	


!

boundary conditions               	


• Similarity function obeys first-order ODE

Scaling Analysis

FN+1(x) = xFN (x) + (1� x)FN (AN )

�FN (x)

�N
= (1� x) [FN (AN )� FN (x)]

FN (x) ' SN�(s) with s = (1� x)N

�0(s) + (1� � s�1)�(s) = 1

�(0) = 0 and �(1) = 1

Similarity solution gives distribution of scaled record

N ! 1

⇣
1� N

N+1

⌘
N ! 1



Similarity Solution

• Equation with yet unknown exponent	

 	


• General solution 	

               	

!

• Boundary condition dictates the exponent	

!

!

• Root is a transcendental number

�0(s) + (1� � s�1)�(s) = 1

Analytic solution for distribution and exponent 

�(s) = s

Z 1

0
dz z��es(z�1)

Z 1

0
dz z��e(z�1) = 1

� = 0.450265027495
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Inferior records
• Start with sequence of random variables	


!

• Calculate the sequence of records	


!

• Compare with the expected average 	


!

• Inferior sequence = records always below average	


!

• What fraction of sequences are inferior? 

expect power law decay, different exponent

{A1, A2, A3, . . . , AN} = {1/2, 2/3, 3/4, . . . , N/(N + 1)}

{X1, X2, X3, . . . , XN} where Xn = max(x1, x2, . . . , xn}

Xn > An for all 1  n  N

IN ⇠ N��

{x1, x2, x3, . . . , xN}



Probability sequence is inferior
• Start with sequence of random variables	


!

• One variable	

!

• Two variables 	

!

• Recursion equation (no interactions between variables)	

!

• Simple solution 

power law decay with trivial exponent
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General distributions
• Arbitrary distribution function	


• Single parameter contains information about tail	


!

• Equals the exponent for inferior sequences	


!

• Exponent for superior sequences	


!

• Power-law distributions (compact support)

IN ⇠ N��
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Continuously varying exponents
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Conclusions II
• Studied persistent configuration of record sequences	


• Linear evolution equations (but nonlocal/memory)	


• Dynamic formulation: treat sequence length as time            	


• Similarity solutions for distribution of records	


• Probability of persistent configuration (inferior, 
superior, inferior) decays as a power-law	


• Power laws exponents are generally nontrivial	


• Exponents can be obtained analytically	


• Tail of distribution function controls record statistics



Take home message

• First-passage probabilities of records have power-law 
tails	


• First-passage exponents are generally nontrivial	


!

Many open problems!
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